3.4.42 \(\int \frac {1}{(a+b \tan ^2(e+f x))^{3/2}} \, dx\) [342]

Optimal. Leaf size=85 \[ \frac {\text {ArcTan}\left (\frac {\sqrt {a-b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{(a-b)^{3/2} f}-\frac {b \tan (e+f x)}{a (a-b) f \sqrt {a+b \tan ^2(e+f x)}} \]

[Out]

arctan((a-b)^(1/2)*tan(f*x+e)/(a+b*tan(f*x+e)^2)^(1/2))/(a-b)^(3/2)/f-b*tan(f*x+e)/a/(a-b)/f/(a+b*tan(f*x+e)^2
)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 85, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {3742, 390, 385, 209} \begin {gather*} \frac {\text {ArcTan}\left (\frac {\sqrt {a-b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{f (a-b)^{3/2}}-\frac {b \tan (e+f x)}{a f (a-b) \sqrt {a+b \tan ^2(e+f x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*Tan[e + f*x]^2)^(-3/2),x]

[Out]

ArcTan[(Sqrt[a - b]*Tan[e + f*x])/Sqrt[a + b*Tan[e + f*x]^2]]/((a - b)^(3/2)*f) - (b*Tan[e + f*x])/(a*(a - b)*
f*Sqrt[a + b*Tan[e + f*x]^2])

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 385

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 390

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(-b)*x*(a + b*x^n)^(p + 1)*
((c + d*x^n)^(q + 1)/(a*n*(p + 1)*(b*c - a*d))), x] + Dist[(b*c + n*(p + 1)*(b*c - a*d))/(a*n*(p + 1)*(b*c - a
*d)), Int[(a + b*x^n)^(p + 1)*(c + d*x^n)^q, x], x] /; FreeQ[{a, b, c, d, n, q}, x] && NeQ[b*c - a*d, 0] && Eq
Q[n*(p + q + 2) + 1, 0] && (LtQ[p, -1] ||  !LtQ[q, -1]) && NeQ[p, -1]

Rule 3742

Int[((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x]
, x]}, Dist[c*(ff/f), Subst[Int[(a + b*(ff*x)^n)^p/(c^2 + ff^2*x^2), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ
[{a, b, c, e, f, n, p}, x] && (IntegersQ[n, p] || IGtQ[p, 0] || EqQ[n^2, 4] || EqQ[n^2, 16])

Rubi steps

\begin {align*} \int \frac {1}{\left (a+b \tan ^2(e+f x)\right )^{3/2}} \, dx &=\frac {\text {Subst}\left (\int \frac {1}{\left (1+x^2\right ) \left (a+b x^2\right )^{3/2}} \, dx,x,\tan (e+f x)\right )}{f}\\ &=-\frac {b \tan (e+f x)}{a (a-b) f \sqrt {a+b \tan ^2(e+f x)}}+\frac {\text {Subst}\left (\int \frac {1}{\left (1+x^2\right ) \sqrt {a+b x^2}} \, dx,x,\tan (e+f x)\right )}{(a-b) f}\\ &=-\frac {b \tan (e+f x)}{a (a-b) f \sqrt {a+b \tan ^2(e+f x)}}+\frac {\text {Subst}\left (\int \frac {1}{1-(-a+b) x^2} \, dx,x,\frac {\tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{(a-b) f}\\ &=\frac {\tan ^{-1}\left (\frac {\sqrt {a-b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{(a-b)^{3/2} f}-\frac {b \tan (e+f x)}{a (a-b) f \sqrt {a+b \tan ^2(e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.
time = 4.22, size = 214, normalized size = 2.52 \begin {gather*} \frac {4 \cos ^3(e+f x) \sin (e+f x) \sqrt {a+b \tan ^2(e+f x)} \left (a (a-b) \, _2F_1\left (2,2;\frac {7}{2};\frac {(a-b) \sin ^2(e+f x)}{a}\right ) \tan ^2(e+f x)+\frac {15 \left (3 a+2 b \tan ^2(e+f x)\right ) \left (-2 \text {ArcSin}\left (\sqrt {\frac {(a-b) \sin ^2(e+f x)}{a}}\right ) \left (a \cos ^2(e+f x)+b \sin ^2(e+f x)\right )+a \sqrt {\frac {(a-b) \sin ^2(2 (e+f x)) \left (a+b \tan ^2(e+f x)\right )}{a^2}}\right )}{\left (\frac {(a-b) \sin ^2(2 (e+f x)) \left (a+b \tan ^2(e+f x)\right )}{a^2}\right )^{3/2}}\right )}{15 a^4 f} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*Tan[e + f*x]^2)^(-3/2),x]

[Out]

(4*Cos[e + f*x]^3*Sin[e + f*x]*Sqrt[a + b*Tan[e + f*x]^2]*(a*(a - b)*Hypergeometric2F1[2, 2, 7/2, ((a - b)*Sin
[e + f*x]^2)/a]*Tan[e + f*x]^2 + (15*(3*a + 2*b*Tan[e + f*x]^2)*(-2*ArcSin[Sqrt[((a - b)*Sin[e + f*x]^2)/a]]*(
a*Cos[e + f*x]^2 + b*Sin[e + f*x]^2) + a*Sqrt[((a - b)*Sin[2*(e + f*x)]^2*(a + b*Tan[e + f*x]^2))/a^2]))/(((a
- b)*Sin[2*(e + f*x)]^2*(a + b*Tan[e + f*x]^2))/a^2)^(3/2)))/(15*a^4*f)

________________________________________________________________________________________

Maple [A]
time = 0.00, size = 102, normalized size = 1.20

method result size
derivativedivides \(\frac {\frac {\sqrt {b^{4} \left (a -b \right )}\, \arctan \left (\frac {b^{2} \left (a -b \right ) \tan \left (f x +e \right )}{\sqrt {b^{4} \left (a -b \right )}\, \sqrt {a +b \left (\tan ^{2}\left (f x +e \right )\right )}}\right )}{\left (a -b \right )^{2} b^{2}}-\frac {b \tan \left (f x +e \right )}{\left (a -b \right ) a \sqrt {a +b \left (\tan ^{2}\left (f x +e \right )\right )}}}{f}\) \(102\)
default \(\frac {\frac {\sqrt {b^{4} \left (a -b \right )}\, \arctan \left (\frac {b^{2} \left (a -b \right ) \tan \left (f x +e \right )}{\sqrt {b^{4} \left (a -b \right )}\, \sqrt {a +b \left (\tan ^{2}\left (f x +e \right )\right )}}\right )}{\left (a -b \right )^{2} b^{2}}-\frac {b \tan \left (f x +e \right )}{\left (a -b \right ) a \sqrt {a +b \left (\tan ^{2}\left (f x +e \right )\right )}}}{f}\) \(102\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+b*tan(f*x+e)^2)^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/f*(1/(a-b)^2*(b^4*(a-b))^(1/2)/b^2*arctan(b^2*(a-b)/(b^4*(a-b))^(1/2)/(a+b*tan(f*x+e)^2)^(1/2)*tan(f*x+e))-1
/(a-b)*b*tan(f*x+e)/a/(a+b*tan(f*x+e)^2)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(b-a>0)', see `assume?` for mor
e details)Is

________________________________________________________________________________________

Fricas [A]
time = 3.25, size = 324, normalized size = 3.81 \begin {gather*} \left [\frac {{\left (a b \tan \left (f x + e\right )^{2} + a^{2}\right )} \sqrt {-a + b} \log \left (-\frac {{\left (a - 2 \, b\right )} \tan \left (f x + e\right )^{2} + 2 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {-a + b} \tan \left (f x + e\right ) - a}{\tan \left (f x + e\right )^{2} + 1}\right ) - 2 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} {\left (a b - b^{2}\right )} \tan \left (f x + e\right )}{2 \, {\left ({\left (a^{3} b - 2 \, a^{2} b^{2} + a b^{3}\right )} f \tan \left (f x + e\right )^{2} + {\left (a^{4} - 2 \, a^{3} b + a^{2} b^{2}\right )} f\right )}}, \frac {{\left (a b \tan \left (f x + e\right )^{2} + a^{2}\right )} \sqrt {a - b} \arctan \left (-\frac {\sqrt {b \tan \left (f x + e\right )^{2} + a}}{\sqrt {a - b} \tan \left (f x + e\right )}\right ) - \sqrt {b \tan \left (f x + e\right )^{2} + a} {\left (a b - b^{2}\right )} \tan \left (f x + e\right )}{{\left (a^{3} b - 2 \, a^{2} b^{2} + a b^{3}\right )} f \tan \left (f x + e\right )^{2} + {\left (a^{4} - 2 \, a^{3} b + a^{2} b^{2}\right )} f}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="fricas")

[Out]

[1/2*((a*b*tan(f*x + e)^2 + a^2)*sqrt(-a + b)*log(-((a - 2*b)*tan(f*x + e)^2 + 2*sqrt(b*tan(f*x + e)^2 + a)*sq
rt(-a + b)*tan(f*x + e) - a)/(tan(f*x + e)^2 + 1)) - 2*sqrt(b*tan(f*x + e)^2 + a)*(a*b - b^2)*tan(f*x + e))/((
a^3*b - 2*a^2*b^2 + a*b^3)*f*tan(f*x + e)^2 + (a^4 - 2*a^3*b + a^2*b^2)*f), ((a*b*tan(f*x + e)^2 + a^2)*sqrt(a
 - b)*arctan(-sqrt(b*tan(f*x + e)^2 + a)/(sqrt(a - b)*tan(f*x + e))) - sqrt(b*tan(f*x + e)^2 + a)*(a*b - b^2)*
tan(f*x + e))/((a^3*b - 2*a^2*b^2 + a*b^3)*f*tan(f*x + e)^2 + (a^4 - 2*a^3*b + a^2*b^2)*f)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\left (a + b \tan ^{2}{\left (e + f x \right )}\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*tan(f*x+e)**2)**(3/2),x)

[Out]

Integral((a + b*tan(e + f*x)**2)**(-3/2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="giac")

[Out]

integrate((b*tan(f*x + e)^2 + a)^(-3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{{\left (b\,{\mathrm {tan}\left (e+f\,x\right )}^2+a\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a + b*tan(e + f*x)^2)^(3/2),x)

[Out]

int(1/(a + b*tan(e + f*x)^2)^(3/2), x)

________________________________________________________________________________________